Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1611759 | Journal of Alloys and Compounds | 2014 | 7 Pages |
Abstract
This paper reports the successful synthesis of SiC/spinel (MgAl2O4) nanocomposite from talc, aluminum and graphite powders. The initial powders were mixed to obtain stoichiometric spinel containing 27.26 wt.% SiC. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques were utilized to characterize the synthesized powders. SiC/spinel nanocomposite was obtained after 6 h ball milling of initial materials in argon atmosphere with subsequent annealing at 1200 °C for 1 h in vacuum. The obtained nanocomposite had crystallites size between 1 and 15 nm with the mean diameter of 9 nm. The SiC/spinel composite formation mechanism was scrutinized. The results showed that SiC/spinel nanocomposite was not produced directly and the formation of some intermediate compounds is unavoidable during the synthesis procedure. The SiC/spinel nanocomposite powder may be a potential nanocomposite for high temperature applications with self-crack-healing capability.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
Fariborz Tavangarian, Guoqiang Li,