Article ID Journal Published Year Pages File Type
1611885 Journal of Alloys and Compounds 2014 9 Pages PDF
Abstract

•Different rare earth elements have remarkably different effects on Mg castability.•For the addition of each RE element, the alloy castability follows a unique pattern.•The effects of RE elements on the castability can be modelled.

Microstructure, castability and tensile properties were investigated in high-pressure die-cast Mg–La–Nd, Mg–La–Y and Mg–La–Gd alloy series, with a constant La concentration at approximately 2.5 wt.% and the concentrations of Nd, Y or Gd were varied. All three alloy series had a dendritic microstructure with a Mg–La-rich eutectic with increasing Nd, Y or Gd content and containing a Mg12RE intermetallic phase. The morphology of the eutectic at ternary alloying additions of equal to or less than 1.0 wt.% was lamellar but became increasingly divorced at higher ternary concentrations. This was however more obvious in Mg–La–Y and Mg–La–Gd than Mg–La–Nd alloys. The hot tearing susceptibility in all three alloy series increased markedly with even micro-alloying additions of Nd, Y or Gd, and began to decrease again in alloys with more than 0.5 wt.% Y or 1.0 wt.% Gd, but did not decrease significantly for Mg–La–Nd. A model using the temperature–fraction solid curves as input parameters was used to estimate hot tearing susceptibility for Mg–La–Nd alloys. Tensile testing at room temperature showed that Mg–La–Nd alloy series had higher 0.2% proof stress and lower elongation to failure than either the Mg–La–Y or the Mg–La–Gd alloy series for Nd concentrations greater than 1 wt.% due to a greater effectiveness of grain boundary reinforcement.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , ,