Article ID Journal Published Year Pages File Type
1613409 Journal of Alloys and Compounds 2013 5 Pages PDF
Abstract

•Structural and electrochemical properties of Ti45Zr38−xNi17+x (x = 0, 8) quasicrystals produced by rapid- quenching were investigated.•Electrochemical performance of Ti45Zr30Ni25 was improved after mechanical milling for 15 h.•Substitution of Ni for Zr in Ti–Zr–Ni system improved the discharge capacity.

The effect of mechanical milling on the discharge performance of electrodes consisting of Ti45Zr38−xNi17+x (x = 0, 8) quasicrystals, which were produced by a rapid-quenching, was investigated at room temperature in three-electrode cell set-up. All of the obtained ribbons were identified to contain mostly icosahedral (i) quasicrystal phase (i-phase). The measured discharge capacity for Ti45Zr30Ni25 material was higher than the one for Ti45Zr38Ni17. The maximum discharge capacity equal 86 mA h g−1 was achieved for Ti45Zr30Ni25, which was mechanically milled for 15 h. This value was obtained at the third discharge process. The recorded discharge performance was quite stable on cycling up to 30 cycles for Ti45Zr38Ni17 material, but slight decrease after 15th cycle was observed for Ti45Zr30Ni25 phase. It should be highlighted that the quasicrystal i-phase remained stable also after 25 h of mechanical milling for both studied materials. However, a formation of (Ti, Zr)H2 hydride phase was observed after charge/discharge cycles for both of the materials.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , , , ,