Article ID Journal Published Year Pages File Type
1613823 Journal of Alloys and Compounds 2013 5 Pages PDF
Abstract

Critical analysis available in the literature experimental results on magnetocaloric effect in ferromagnetic shape memory alloys Ni–Mn–X (X = Ga, In, Sn, Sb) is given. Based on a model developed by Pecharsky et al. [22], it is shown that the isothermal magnetic field-induced entropy change in the Ni–Mn–X alloys should not greatly exceed 30 J/kg K. Considering thermodynamics of temperature- and magnetic field-induced martensitic transformations, it is demonstrated that a contribution of the structural subsystem to the magnetocaloric effect in the Ni–Mn–X alloys studied so far is irreversible in magnetic fields below 5 T. This makes ferromagnetic shape memory alloys an inconvenient system for the practical application in modern magnetic refrigeration technology.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Critical analysis of the available experimental results on isothermal magnetic entropy change in ferromagnetic shape memory alloys Ni–Mn–X (X = Ga, In, Sn, Sb) is given. ► Based on available in literature experimental data on total entropy change at martensitic transformation it is shown that the isothermal magnetic entropy change in Ni–Mn–X (X = Ga, In, Sn, Sb) should not greatly exceed 30 J/kg K.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
,