Article ID Journal Published Year Pages File Type
1614005 Journal of Alloys and Compounds 2013 11 Pages PDF
Abstract
A multiphysics based computational model was developed to predict the dilution of molybdenum (Mo) on an aluminum (Al) substrate during the laser surface alloying process. The influence of laser surface alloying processing parameters such as input energy, scanning speed, and overlapping ratio on dilution of Mo in Al was explored via computational model. The computational model, closely predicts the melt pool geometry (width and depth) that subsequently helps in estimating dilution. It was observed that the dilution increases with the increase in laser power, while it decreases with the increase in scanning speed. The phase and microstructural analyses revealed the existence of Al5Mo intermetallic for most of the laser surface alloying processing conditions. However, at higher (3.18 × 107 J/m2) and lower (1.91 × 107 J/m2) laser energy densities, the Al8Mo3 intermetallic was also evolved. These experimental observations validate the model's predictions and points to its reliability in predicting the expected intermetallics in Al-Mo system for various laser surfacing alloying processing conditions.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , ,