Article ID Journal Published Year Pages File Type
1614686 Journal of Alloys and Compounds 2013 7 Pages PDF
Abstract

In this article, we report the development of an efficient and rapid microwave assisted solvothermal (MAS) method to prepare wurtzite ZnS nanoparticles at 413 K using different precursors. The materials obtained were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (MET) ultraviolet–visible (UV–vis) and photoluminescence (PL) measurements. The structure, surface chemical composition and optical properties were investigated as a function of the precursor. In addition, effects as well as merits of microwave heating on the processing and characteristics of ZnS nanoparticles obtained are reported. The possible formation mechanism and optical properties of these nanoparticles were also reported.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► This work details the efficiency of microwave solvothermal synthesis in obtaining ZnS nanocrystals. ► The structure, surface chemical composition and optical properties were investigated as function of the precursor. ► According to the different precursors used, the PL behavior of ZnS causes a red shift which enables the design of LEDs with different colors. ► Photoluminescence is one more interesting property for technological applications this material.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , , , , ,