Article ID Journal Published Year Pages File Type
1616291 Journal of Alloys and Compounds 2012 7 Pages PDF
Abstract

Nanocrystalline CdS thin films were deposited on glass substrates by a new in situ chemical reaction synthesis using cadmium precursor solid films as reaction source and sodium sulfide based solutions as anionic reaction medium. The influence of the S:Cd molar concentrations in separate cationic and anionic precursor solutions and the deposition temperature on the crystallized structure, morphologies, chemical component and optical properties of the deposited CdS films was investigated by X-ray diffraction, field emission scanning electron microscope, energy dispersive X-ray analysis and UV–Vis spectra measurements. The results show that CdS thin films deposited by the in situ chemical reaction synthesis have wurtzite structure with (0 0 2) plane preferential orientation and this tendency gradually enhances with increase of S:Cd molar concentration ratio. The deposition rate was 80–100 nm thickness per cycle in the range of deposition temperature from 20 °C to 60 °C.

► We have deposited nanocrystalline CdS thin films on glass substrates by a new in situ chemical reaction synthesis. ► This method used cadmium precursor solid films as reaction source and sodium sulfide based solutions as anionic reaction medium. ► The influence of the S:Cd molar concentrations in separate cationic and anionic precursor solutions on CdS films was investigated. ► The influence of the deposition temperature on crystallized structure and morphologies of the deposited CdS films were investigated.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , ,