Article ID Journal Published Year Pages File Type
1618464 Journal of Alloys and Compounds 2010 7 Pages PDF
Abstract

MmNi4.2Co0.3Mn0.4Al0.3Mg0.03 hydrogen storage alloy was prepared by single-roll rapid quenching followed by different annealing treatments for 8 h at 1133 K, 1173 K, 1213 K, and 1253 K, respectively. Alloy structure, phase composition, pressure–composition–temperature (PCT) properties, and electrochemical performance of different annealed alloys have been investigated by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), energy dispersion spectrometer (EDS), automatic Sieverts-type apparatus, and electrochemical experiments. Electrochemical experiments indicate that the annealing treatment at 1213 K extends cycle life from 193 cycles to 358 cycles, increases the maximum discharge capacity, and slightly decreases the activation behavior. Alloy structure analyses show that the improvement in cycle life is attributed to the formation of a single CaCu5-type structure or the relief of an Mg-containing AlMnNi2-type second phase. Pressure composition isotherms results illustrate that both the hydrogen absorption capability and the dehydriding equilibrium pressure go up with increased annealing temperature. For its good performance/cost ratio, the Mg-added low-Co alloy annealed at 1213 K would be a promising substitution for MmNi4.05Co0.45Mn0.4Al0.3 alloy product.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , , ,