Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1620086 | Journal of Alloys and Compounds | 2010 | 8 Pages |
Abstract
In the present study, 0.35 and 1.1 vol.% of nano-size copper were incorporated into pure tin using hybrid microwave sintering assisted powder metallurgy route. Microwave sintered samples were extruded both at room temperature and at 230 °C. Microstructural characterization studies were conducted on the extruded samples to investigate the distribution characteristics of secondary phase, grains and pores morphology. Resistivity of solder samples was also investigated and found to be not affected by the high temperature extrusion. Room temperature tensile test results revealed that hot extruded Sn-Cu samples exhibited higher strengths and ductility when compared to room temperature extruded samples. On the contrary, the tensile properties of pure tin remained independent of extrusion temperature. An attempt is made in this study to correlate the presence of copper and effect of extrusion temperature on the microstructural evolution and mechanical response of tin.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
M.E. Alam, M. Gupta,