Article ID Journal Published Year Pages File Type
1620397 Journal of Alloys and Compounds 2010 7 Pages PDF
Abstract

The present study established a time-saving technique for hydrogen uptake measurements using a high-pressure thermo-gravimetric analyzer (HPTGA). The critical buoyancy effects were considered in the analysis model. The HPTGA technique developed here for metal–organic frameworks (MOFs) was validated through independent experiments. The room temperature (RT) hydrogen uptake of MOFs via spillover was significantly enhanced by use of a bridge-building treatment. MOF samples with different structural parameters and RT hydrogen uptake performance can be prepared and manipulated through various factors affecting their synthesis. The structural evolution of MOFs within various steps during the synthesis and bridge-building processes were investigated by electron microscopy, nitrogen sorption isotherm analysis, and powder X-ray diffraction.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , , ,