Article ID Journal Published Year Pages File Type
1620642 Journal of Alloys and Compounds 2009 4 Pages PDF
Abstract

The microwave dielectric properties and the microstructures of the (1 − x)(Mg0.6Zn0.4)0.95Co0.05TiO3–xCa0.61Nd0.26TiO3 ceramic system were investigated. In order to achieve a temperature-stable material, we studied a method of combining a positive temperature coefficient material with a negative one. Ca0.61Nd0.26TiO3 has a large positive temperature coefficient of resonant frequency. (Mg0.6Zn0.4)0.95Co0.05TiO3 possesses a negative temperature coefficient of resonant frequency. By appropriately adjusting the x value in the (1 − x)(Mg0.6Zn0.4)0.95Co0.05TiO3–xCa0.61Nd0.26TiO3 ceramic system, a near-zero τf value can be obtained. A new microwave dielectric material of 0.8(Mg0.6Zn0.4)0.95Co0.05TiO3–0.2Ca0.61Nd0.26TiO3 possesses the excellent dielectric properties of a dielectric constant of 28.6, a Q × f value of 80,600 GHz and a temperature coefficient of resonant frequency of 4.1 ppm/°C and has a lower sintering temperature of 1250 °C.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
,