Article ID Journal Published Year Pages File Type
1621679 Journal of Alloys and Compounds 2010 5 Pages PDF
Abstract
In this work, two new gel-combustion routes for the synthesis of Al2O3 nanopowders with aspartic acid as fuel are presented. The first route is a conventional stoichiometric process, while the second one is a non-stoichiometric, pH-controlled process. These routes were compared with similar synthesis procedures using glycine as fuel, which are well-known in the literature. The samples were calcined in air at different temperatures, in a range of 600-1200 °C. They were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and BET specific surface area. Different phases were obtained depending on the calcination temperature: amorphous, γ (metastable) or α (stable). The amorphous-to-γ transition was found for calcination temperatures in the range of 700-900 °C, while the γ-to-α one was observed for calcination temperatures of 1100-1200 °C. The retention of the metastable γ phase is probably due to a crystallite size effect. It transforms to the α phase after the crystallite size increases over a critical size during the calcination process at 1200 °C. The highest BET specific surface areas were obtained for both nitrate-aspartic acid routes proposed in this work, reaching values of about 50 m2/g.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , ,