Article ID Journal Published Year Pages File Type
1622755 Journal of Alloys and Compounds 2009 5 Pages PDF
Abstract

Zn0.97Co0.03O films with and without ZnO buffer layer have been fabricated by magnetron sputtering to investigate the role of grain boundary defects in ferromagnetic ordering in this system. The deposited wurtzite films with (0 0 2) preferred orientation all show intrinsic room temperature ferromagnetism based on the substitutional behavior of Co2+. We found that the ZnO/Co:ZnO film grows in smaller grain size, compared with Co:ZnO film, which leads to the increase in grain boundary defects. Meanwhile the increase in oxygen vacancies is confirmed by Co K-edge X-ray-absorption near-edge spectra and the enhancement of saturated magnetization is observed in ZnO/Co:ZnO film. Hence the most important factor for mediating ferromagnetism is proposed to be grain boundary defects, i.e., oxygen vacancies. Bound magnetic polaron mechanism is adopted to explain the intrinsic origin and the mediative effects of grain boundary defects on ferromagnetism in Co-doped ZnO films.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , ,