Article ID Journal Published Year Pages File Type
1623036 Journal of Alloys and Compounds 2009 5 Pages PDF
Abstract

In this paper we report a novel Mn3O4 electrode doped with nano-NaBiO3. It is demonstrated that doping with nano-NaBiO3 alters the electrochemical inertia of Mn3O4, converting it into a rechargeable secondary alkaline cathode material that exhibits highly efficient charge/discharge properties. While a pure Mn3O4 electrode can barely maintain a single charge and discharge cycle, the cycling capacity of the Mn3O4 electrode doped with nano-NaBiO3 can reach and become stable at 372 mAh g−1 under 60 mA g−1. The doped cathode can also maintain a cycling capacity of 261 mAh g−1 while holding a 95.3% reversible capacity after 60 cycles at a high rate of 500 mA g−1. Moreover, the experimental results indicate that charging time for an alkaline battery using doped Mn3O4 cathode could possibly shorten to as little as 30 min.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , ,