Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1623820 | Journal of Alloys and Compounds | 2008 | 6 Pages |
Abstract
Fully dense, monolithic ternary Cr2AlC compounds were synthesized via a powder metallurgical route, and their cyclic oxidation behavior was investigated between 1000 and 1300 °C in air for up to 100 h. At 1000 and 1100 °C, Cr2AlC displayed excellent cyclic oxidation resistance by forming a less than 5 μm-thick Al2O3 oxide layer and a narrow Cr7C3 underlayer. At 1200 and 1300 °C, an outer (Al2O3, Cr2O3)-mixed oxide layer, an intermediate Cr2O3 oxide layer, an inner Al2O3 oxide layer, and a Cr7C3 underlayer formed on the surface. From 1200 °C, scale cracking and spalling began to occur locally to a small extent. At 1300 °C, the cyclic oxidation resistance deteriorated owing to the formation of voids and the spallation of the scales.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
D.B. Lee, Thuan Dinh Nguyen,