Article ID Journal Published Year Pages File Type
1623978 Journal of Alloys and Compounds 2008 7 Pages PDF
Abstract

W–20 wt.% Cu powder mixture was mechanically alloyed by high-energy ball milling for various times and the effect of mechanical alloying (MA) on the sintering response of the composite compacts was investigated. The densification, microstructure, hardness and electrical conductivity after solid phase sintering (SPS) and liquid phase sintering (LPS) were examined. It was shown that the microstructure of mechanically alloyed powder profoundly influence the sintering response, i.e. a meaningful relationship between the sintering kinetics and the milling time was observed. It is suggested that MA disintegrates the W–W particle networks and increases the contribution of solid phase sintering (SPS) of nanostructured Cu and W particles on the densification. Higher hardness and conductivity were achieved by prolonged MA and SPS, indicating a lower W–W contiguity of the milled powders compared with the conventionally prepared W–Cu composite. On the other hand, depression of the melting temperature of copper up to 145 °C was noticed by affording a prolonged MA. The lower melting temperature and finer distribution of the Cu particles in the W matrix enhanced the densification during LPS and improved the homogeneity and properties of the final product.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, ,