Article ID Journal Published Year Pages File Type
1625184 Journal of Alloys and Compounds 2008 8 Pages PDF
Abstract
Aluminum matrix composites reinforced by Al3Zr and ZrB2 particles were fabricated from Al-x wt.%(K2ZrF6-KBF4) (x = 5, 10, 15, 20, 25) systems via magnetochemistry in situ reaction and the dry sliding wear properties and behavior of the composites were investigated. XRD and SEM analysis show that ZrB2 and Al3Zr reinforcement phases have been obtained and been distributed uniformly in the aluminum matrix. Wear test results show that the values of wear weight loss of the composites decrease with the increase of x under all identical wear conditions, and that of the relative wear resistance Rrelat. increases under the applied load of 100 N. Especially, when x = 25, the wear weight loss (under a sliding time of 120 min and an applied load of 100 N), which is 0.245 to that of the A356 alloy, and the Rrelat. (under the intermediate wear-sliding stage and an applied load of 100 N) is 4.772, which is 1.513 to that of the primary stage, respectively. Two modes of the wear mechanisms of the as-prepared composites were identified.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , ,