Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1625660 | Journal of Alloys and Compounds | 2007 | 5 Pages |
The thermal stability and crystallization kinetics of a Ni- (Cr, Si, Fe, B, C, P) based amorphous brazing foil have been investigated by non-isothermal differential scanning calorimetry. The glass transition temperature Tg, is found to be 720 ± 2 K. The amorphous alloy showed three distinct, yet considerably overlapping crystallization transformations with peak crystallization temperatures centered around 739, 778 and 853 ± 2 K, respectively. The solidus and liquidus temperatures are estimated to be 1250 and 1300 ± 2 K, respectively. The apparent activation energies for the three crystallization reactions have been determined using model free isoconversional methods. The typical values for the three crystallization reactions are: 334, 433 and 468 kJ mol−1, respectively. The X-ray diffraction of the crystallized foil revealed the presence of following compounds Ni3B (Ni4B3), CrB, B2Fe15Si3, CrSi2, and Ni4.5Si2B.