Article ID Journal Published Year Pages File Type
1626406 Journal of Alloys and Compounds 2007 5 Pages PDF
Abstract

The effects of potential on the hydrogen absorption and desorption of commercial pure titanium immersed in neutral 2.0% and 0.2% NaF solutions for 24 h have been investigated by hydrogen thermal desorption analysis. Hydrogen absorption occurs in both solutions under less noble potentials than −1.2 V versus a saturated calomel electrode. The amount of absorbed hydrogen increases with decreasing applied potential. Under the same applied potential, the amount of hydrogen absorbed in the 2.0% NaF solution is larger than that in the 0.2% NaF solution. Hydrogen thermal desorption is observed in the temperature range from 250–300 to 700 °C. For the 2.0% NaF solution, compared with the 0.2% NaF solution, the amount of hydrogen desorbed in the high temperature range is large. The hydrogen desorption behavior for neutral NaF solutions under the applied potential is not necessarily consistent with that for acidulated phosphate fluoride solutions without the applied potential reported previously.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , ,