Article ID Journal Published Year Pages File Type
1628127 Journal of Iron and Steel Research, International 2016 8 Pages PDF
Abstract

High pressure roll grinding (HPRG) and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate, which was manufactured through magnetizing roasting-magnetic separation of high-phosphorus oolitic iron ores. The results indicated that when high-phosphorus iron ore concentrates containing 54.92 mass % iron and 0.76 mass % phosphorus were directly processed through acid leaching, iron ore concentrates containing 55.74 mass% iron and 0.33 mass % phosphorus with an iron recovery of 84.64 % and dephosphorization of 63.79 % were obtained. When high-phosphorus iron ore concentrates activated by ball milling were processed by acid leaching, iron ore concentrates containing 56.03 mass % iron and 0.21 mass% phosphorus with an iron recovery of 85.65% and dephosphorization of 77.49 % were obtained. Meanwhile, when high-phosphorus iron ore concentrates activated by HPRG were processed by acid leaching, iron ore concentrates containing 58.02 mass% iron and 0.10 mass% phosphorus were obtained, with the iron recovery reaching 88.42% and the dephosphorization rate reaching 88.99%. Mechanistic studies demonstrated that ball milling can reduce the particle size, demonstrating a prominent reunion phenomenon. In contrast, HPRG pretreatment contributes to the formation of more cracks within the particles and selective dissociation of iron and P bearing minerals, which can provide the favorable kinetic conditions to accelerate the solid-liquid reaction rate. As such, the crystal structure is destroyed and the surface energy of mineral particles is strengthened by mechanical activation, further strengthening the dephosphorization.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , ,