Article ID Journal Published Year Pages File Type
1628195 Journal of Iron and Steel Research, International 2015 6 Pages PDF
Abstract
As an increasing demand of advanced nuclear fission reactors and fusion facilities, the key requirements for the materials used in advanced nuclear systems should encompass superior high temperature property, good behavior in corrosive environment, and high irradiation resistance, etc. Recently, it was found that some selected high entropy alloys (HEAs) possess excellent mechanical properties at high temperature, high corrosion resistance, and no grain coarsening and self-healing ability under irradiation, especially, the exceptional structural stability and lower irradiation-induced volume swelling, compared with other conventional materials. Thus, HEAs have been considered as the potential nuclear materials used for future fission or fusion reactors, which are designed to operate at higher temperatures and higher radiation doses up to several hundreds of displacement per atom (dpa). An insight into the irradiation behavior of HEAs was given, including fundamental researches to investigate the irradiation-induced phase crystal structure change and volume swelling in HEAs. In summary, a brief overview of the irradiation behavior in HEAs was made and the irradiation-induced structural change in HEAs may be relatively insensitive because of their special structures.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , ,