Article ID Journal Published Year Pages File Type
1628686 Journal of Iron and Steel Research, International 2013 9 Pages PDF
Abstract

An efficient approach was introduced for improving the condition of major controlled rolling process parameters of roughing, finishing and coiling temperatures and optimizing these parameters to obtain minimum grain size and maximum dome height simultaneously. Taguchi method combined with grey relational analysis was applied to achieve optimum grain size and dome height during controlled rolling process. For this purpose, four levels for the above temperatures were chosen and sixteen experiments were conducted based on orthogonal array of Taguchi method. Based on Taguchi approach, signal-to-noise (S/N) ratios were calculated and used in order to obtain the optimum levels for every input parameter. Analysis of variance revealed that finishing and coiling temperatures have the maximum effect on the grain size and dome height of microalloyed steels. The confirmation tests with the optimal levels of parameters indicated that the grain size and dome height of controlled rolled microalloyed steels can be improved effectively through this approach.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys