Article ID Journal Published Year Pages File Type
1628982 Journal of Iron and Steel Research, International 2011 5 Pages PDF
Abstract

The antimony segregation at grain boundary was observed and the temper embrittlement in titanium-doped nickel-chromium steel was analyzed. It is concluded that the antimony segregation at grain boundary is nonequilibium and the kinetics of temper embrittlement agrees well with those of nonequilibrium antimony segregation at grain boundary. Besides, the mechanism of nonequilibrium antimony segregation at grain boundary proved to be the most satisfactory one among the existing mechanisms to interpret the antimony-induced embrittlement kinetics in the nickel-chromium steel. Based on these, the activation energy and frequency factor of diffusion of antimony-vacancy complexes were obtained according to the concept of critical time in nonequilibrium grain boundary segregation theory.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys