Article ID Journal Published Year Pages File Type
1629269 Journal of Iron and Steel Research, International 2009 6 Pages PDF
Abstract

To reveal the basic deformation mechanisms under the conditions of high friction, small reduction, and long contact length in thin strip temper rolling process, an elastoplastic finite element analysis of plane strain upsetting was made based on the FEM software Marc. The results indicated that a near flat ‘zero reduction’ region was present in the center of the contact arc. The simulation results about the effect of rolling parameters on the central flat region showed that any change of increasing the rolling force could result in or enlarge the central flat region in the deformation zone. Stress distribution results illustrated that the metal was in triaxial compression state. Although the maximum and minimum principal stresses were all much larger than the yield stress of the strip, the equivalent stress became lower than that, and no further plastic strain, even a small elastic spring-back occurred in the central flat region. That was the problem of ‘hydrostatic pressure’ in thin strip temper rolling.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys