Article ID Journal Published Year Pages File Type
1630199 Journal of Magnesium and Alloys 2014 9 Pages PDF
Abstract
The microstructure, mechanical property, and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg-1.5Zn-0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy. The results show that the Mg-1.5Zn-0.6Zr alloy had a single-phase solid solution structure, with an average grain size of 34.7 ± 13.1 μm. The alloy exhibited ultimate tensile strength of 168 ± 2.0 MPa, yield strength of 83 ± 0.6 MPa, and elongation of 9.1 ± 0.6%. Immersion tests and electrochemical measurements reveal that the alloy displayed lower biocorrosion rate and more uniform corrosion mode than AZ91D in Hank's solution. The elimination of intensive galvanic corrosion reactions and the formation of a much more compact and uniform corrosion film mainly account for the better biocorrosion properties of the Mg-1.5Zn-0.6Zr alloy than AZ91D.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , ,