Article ID Journal Published Year Pages File Type
1630579 Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material 2007 4 Pages PDF
Abstract
Mesoporous silica materials with high pore volume were successfully prepared by the chemical precipitation method, with water glass and a biodegradable nonionic surfactant polyethylene glycol (PEG). The obtained materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analyzer and differential scanning calorimetry (TG-DSC), nitrogen adsorption-desorption measurements, and X-ray diffraction (XRD). The results showed that the changes of the pore parameters depended on both the surfactant content and heat treatment temperature. When the content of PEG was 10wt% and the obtained PEG/SiO2 composite was heated at 600°C, the mesoporous silica with a pore volume of 2.2 cm3/g, a BET specific surface area of 361.55 m2/g, and a diameter of 2-4 μm could be obtained. The obtained mesoporous silica materials have potential applications in the fields of paint and plastic, as thickening, reinforcing, and flatting agents.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , ,