Article ID Journal Published Year Pages File Type
1630654 Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material 2006 4 Pages PDF
Abstract
The investigation of the influences of important parameters including steel chemical composition and hot rolling parameters on the mechanical properties of steel is a key for the systems that are used to predict mechanical properties. To improve the prediction accuracy, support vector machine was used to predict the mechanical properties of hot-rolled plain carbon steel Q235B. Support vector machine is a novel machine learning method, which is a powerful tool used to solve the problem characterized by small sample, nonlinearity, and high dimension with a good generalization performance. On the basis of the data collected from the supervisor of hotrolling process, the support vector regression algorithm was used to build prediction models, and the off-line simulation indicates that predicted and measured results are in good agreement.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , ,