Article ID Journal Published Year Pages File Type
1630677 Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material 2006 8 Pages PDF
Abstract
The kinetic characteristics of W grain growth operated by diffusion controlled Oswald ripening (DOR) during liquid phase sintering were studied. A liquid phase sintering of W-15wt%Cu was carried out by pushing compacts into a furnace at the moment when the temperature increased to 1340° for different sintering times. The results show that liquid phase sintering produces the compacts with considerably low relative density and inversely, rather high homogeneity. On the basis of the data extracted from the SEM images, the kinetic equation of W grain growth, Gn =G0n + kt, is determined in which the grain growth exponent n is 3 and the grain growth rate constant k is 0.15 μm3/s. The cumulative normalized grain size distributions produced by different sintering times show self-similar. The cumulative distribution function is extracted from the curves by non-linear fitting. In addition, the sintering kinetic characteristics of W-15wt%Cu compacts were also investigated.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , ,