Article ID Journal Published Year Pages File Type
1634273 Procedia Materials Science 2013 7 Pages PDF
Abstract

Textile-reinforced composites with thermoplastic matrices are characterised by high specific mechanical properties and enable short processing times. In addition, function-integrative lightweight components can be realised by embedding sensor networks into such composite structures. In the present study, composites with integrated sensor networks consisting of strain gauges, interconnection buses and application-specific integrated circuits (ASIC) are analysed. At first, the mechanical behaviour of glass fibre-reinforced polypropylene (GF/PP) with embedded sensor network components is investigated. Micrograph investigations and computer tomography analyses are used to study fibre orientations and interface qualities between the thermoplastic composite and the embedded components. Mechanical tests under tensile and flexural loading are accomplished with strip specimens in order to study the effects of the embedding on the structural stiffness and strength of the composite. Afterwards, the strains measured by embedded strain gauges are evaluated by means of optical measuring techniques under tensile loading. The results confirm that integrated sensor networks are suited for the structural health monitoring of GF/PP structures.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys