Article ID Journal Published Year Pages File Type
1634505 Procedia Materials Science 2014 10 Pages PDF
Abstract

This paper discusses the impact of nanoparticle concentrations on heat transfer characteristics in a Loop Heat Pipe (LHP). In this study, alumina nanoparticles (Al2O3) in water with particle mass concentration ranged from 0% to 3% is considered as the operational fluid within the LHP. The experiments are carried out by manufacturing the LHP, in which the setup consists of a water tank with pump, a flat evaporator, condenser installed with two pieces of fans, two transportation lines (vapor and liquid lines), copper pipe sections for attachment of the thermocouples and power supply. The uniqueness of the current experimental setup is the vapor line of LHP which is made of transparent plastic tube to visualize the fluid flow patterns. The experimental results are verified by Finite Element (FE) simulation using a three-dimensional (3D) model based on the heat transfer by conduction where the LHP as a whole is modeled by assuming it as a conducting medium without taking into account the events occurring inside the LHP. The LHP performance is evaluated in terms of transient temperature distribution and total thermal resistance (Rt). The experimental and simulation results are found in good agreement.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys