Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1635459 | Rare Metals | 2006 | 8 Pages |
Abstract
Tailoring non-metallic inclusions in accordance to the desired effect on steel properties has gained widespread acceptance in the last decades and has become known as “inclusion engineering”. Effective inclusion engineering involves three steps: (a) a good knowledge of how inclusions influence properties, (b) understanding what is the effect of each type of inclusions on these properties and thus which is the most desirable inclusion in a given product and (c) adjusting the processing parameters to obtain these inclusions. A significant portion of the process adjustment is done during steel refining, where the steel can be tailored so that the desired chemical composition of the non-metallic inclusions that will precipitate can be altered. Understanding the relations between steel chemistry, processing variables and inclusion chemical composition requires significant understanding of the thermodynamics of the systems involved. These complex equilibrium calculations are best done using computational thermodynamics. In this work some of the basic techniques used to control inclusion composition are reviewed and the thermodynamic information required to perform this task is presented. Several examples of the application of computational thermodynamics to inclusion engineering of different steels grades are presented and compared with experimental results, whenever possible. The potential and limitations of the method are highlighted, in special those related to thermodynamic data and databases.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
A. Costa e Silva,