Article ID Journal Published Year Pages File Type
1635636 Transactions of Nonferrous Metals Society of China 2016 7 Pages PDF
Abstract

Li[NixCoyMnz]O2 (0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method. It is found that the ratio of peak intensities of (003) to (104) observed from X-ray diffraction (XRD) increases with decreasing the Ni content or increasing the Co content. The scanning electron microscopy (SEM) images reveal that the small primary particles are agglomerated to form the secondary ones. As the Mn content increases, the primary and secondary particles become larger and the resulted particle size for the Li[Ni0.6Co0.2Mn0.2]O2 is uniformly distributed in the range of 100–300 nm. Although the initial discharge capacity of the Li/Li[NixCoyMnz]O2 cells reduces with decreasing the Ni content, the cyclic performance and rate capability are improved with higher Mn or Co content. The Li[Ni0.6Co0.2Mn0.2]O2 can deliver excellent cyclability with a capacity retention of 97.1% after 50 cycles.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , , ,