Article ID Journal Published Year Pages File Type
1635774 Transactions of Nonferrous Metals Society of China 2015 11 Pages PDF
Abstract
The influence of rock dust size (10-30 µm) and mass fraction (5%-15%) on density, hardness and dry sliding wear behavior of Al 6061/rock dust composite processed through stir casting was investigated. Wear behavior of the developed composite was characterized at different loads, sliding velocities and distances using pin-on-disc setup. The experiments were conducted based on Taguchi's L27 orthogonal array and the influence of process parameters on wear rate was studied using ANOVA. The experimental results reveal that the applied load and reinforcement size are the major parameters influencing the specific wear rate for all samples, followed by mass fraction of reinforcement, sliding velocity and sliding distance at the level of 47.61%, 28.57%, 19.04%, 9.52% and 4.76%, respectively. The developed regression equation was tested for its accuracy and made evident that it can be used for predicting the wear rate with minimal error. With the help of SEM images, the worn surfaces of the novel composite were studied and the analysis proves that the wear resistance of aluminium alloys can be well improved with the addition of rock dust as reinforcement.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , ,