Article ID Journal Published Year Pages File Type
1635853 Transactions of Nonferrous Metals Society of China 2015 8 Pages PDF
Abstract

Commercial AZ31 magnesium alloy sheets were rolled by nearly 70% thickness reduction in one rolling pass at 823 K. The results show that ultrafine grains are distributed in both shear bands and surfaces of the rolled sheets. The grain size of the refined grain in the shear bands is 0.4–1 μm. The outstanding grain refinement is attained by dynamic recrystallization due to flow localization. The texture in middle layer of the sheet is basal texture with little change in intensity throughout the rolling process, while the texture on surface becomes a double-peak texture with basal poles splitting in the transverse direction (TD). The relative intensity of the double-peak texture is 26.6, which is quite higher than that of the texture in the middle layer. The inhomogeneous strain distribution is responsible for the exceptional grain refinement and texture evolution.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys