Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1637129 | Transactions of Nonferrous Metals Society of China | 2014 | 7 Pages |
Abstract
The microstructure, the content of compounds, mechanical properties and fracture behavior of high vacuum die casting Mg-8Gd-3Y-0.4Zr alloy (mass fraction, %) under T4 condition and T6 condition were investigated. The microstructure for the as-cast Mg-8Gd-3Y-0.4Zr alloy mainly consists of α-Mg and eutectic Mg24(Gd,Y)5 compound. After solution treatment, the eutectic compounds dissolve massively into the Mg matrix. The main composition of solution-treated alloys is supersaturated α-Mg and cuboid-shaped phase. The T4 heat treated samples have increasing cuboidal particles with the increase of heat treatment temperature, which turn out good mechanical properties. The optimum T4 heat treatment for high vacuum die cast Mg-8Gd-3Y-0.4Zr alloy is 475 °C, 2 h according to microstructure results. The optimum ultimate strength and elongation of solution-treated Mg-8Gd-3Y-0.4Zr alloy are 222.1 MPa and 15.4%, respectively. The tensile fracture mode of the as-cast, and T6 heat treated alloys is transgranular quasi-cleavage fracture.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
Zhi-qin WANG, Bin ZHANG, De-jiang LI, Robert FRITZSCH, Xiao-qin ZENG, Hans J. ROVEN, Wen-jiang DING,