Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1637493 | Transactions of Nonferrous Metals Society of China | 2011 | 8 Pages |
Abstract
A robust experimental procedure was developed, by which the evolution of fatigue damage in AZ31 magnesium alloy was tracked online with the ultrasonic nonlinearity parameter β. β values of three sets of samples under different stress levels were measured. Microstructures of specimens at different fatigue stages were observed in situ by optical microscopy. The experimental results show that there is a significant increase in β linked to the accumulation of persistent slip bands (PSBs) and micro-cracks at the early stages of fatigue life and reaches the maximum, about 55% of fatigue life. Ultrasonic attenuation coefficient increases with the expanding of micro-cracks and leads to β decrease slightly after 55% of fatigue life. The variation of β with fatigue cycles is in good agreement with the growth of PSBs and micro-cracks. In addition, it has no significant effect on the experimental results for the changes of low- and high-cycle fatigue and the fatigue mode with tension-tension and tension-compression.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
Bin WU, Bing-sheng YAN, Cun-fu HE,