Article ID Journal Published Year Pages File Type
1637961 Transactions of Nonferrous Metals Society of China 2013 11 Pages PDF
Abstract
To investigate the mechanistic influence of the deviation ratio and heating temperature on the hot shear spinning of TA15 alloy, the geometric precision and microstructure evolution of the hot-spun parts were experimentally investigated under different conditions. The results show that diametrical shrinkage occurs under a negative deviation ratio, and a sudden decrease in heating temperature creates a sharp increase in the shrinkage. A pronounced diametrical enlargement increases from the bottom location to the open end of the workpiece under a positive deviation ratio with a gradual decrease in heating temperature. The hot shear spinning process can lead to a non-uniform microstructure that results from the non-uniform deformation along the thickness direction. The distortion degree of the fiber microstructure formed near the outer surface increases with the decrease in the deviation ratio. A deviation ratio near zero and heating to a temperature within the desired range are beneficial conditions for obtaining spun parts with satisfactory geometric precision and a uniform microstructure.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , ,