Article ID Journal Published Year Pages File Type
1638416 Transactions of Nonferrous Metals Society of China 2007 5 Pages PDF
Abstract

Hydrogen diffusion in Zr35Ni55V10 amorphous alloy was measured by chronopotentiometry. The results show that at lower molar ratio of hydrogen (x < 0.06, x=n(H)/n(M)), the diffusivity of hydrogen increases rapidly with increasing the molar ratio of hydrogen. However, when x(H) > 0.1, the diffusivity of hydrogen decreases slightly with increasing the molar ratio of hydrogen, which is similar to the change in crystalline alloy. It is proposed that hydrogen atoms mainly occupy the sites corresponding to tetrahedra with 4 Zr atoms at lower molar ratio of hydrogen. When the molar ratio of hydrogen is higher, the additional hydrogen atoms are in sites with higher energy and these sites in amorphous state are similar to these in crystalline states.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys