Article ID Journal Published Year Pages File Type
1638717 Transactions of Nonferrous Metals Society of China 2010 4 Pages PDF
Abstract

Effects of temperature and heating rate on the mechanical properties of the tensile specimens of magnesium alloy AZ31 were experimentally investigated using a Gleeble-1500 thermo-mechanical material testing system. The metallurgraphs of the fracture section of the specimens were also experimentally observed and analyzed for exploring their failure mechanism under different temperatures and heating rates. The results show that the higher the temperature, the lower the ultimate strength of the specimens. And the higher the heating rate, the higher the ultimate strength of the specimens. The high temperatures and high heating rates will induce microvoids in the specimens which make the specimens failure under relatively low loads.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys