Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1639187 | Transactions of Nonferrous Metals Society of China | 2011 | 7 Pages |
Abstract
Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method. The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied. It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1, uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy. The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm, and the tap-density was measured to be approximately 2.37 g/cm3, which is comparable with that of commercialized LiCoO2. XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure. The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V. The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
Chuan-yue HU, Jun GUO, Yong DU, Hong-hui XU, Yue-hui HE,