Article ID Journal Published Year Pages File Type
1639191 Transactions of Nonferrous Metals Society of China 2011 7 Pages PDF
Abstract

Based on the available experimental data, the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method. The solution phases, including liquid, fcc_A1(Ni) and rhombohedral_A7(Bi), were described as substitutional solution phases, of which the excess Gibbs energies were expressed with the Redlich-Kister polynomial. The intermetallic compound, BiNi, was modeled using three sublattices (Bi)(Ni,Va)(Ni,Va) considering its crystal structure (NiAs-type) and the compatibility of thermodynamic database in the multi-component systems, while Bi3Ni was treated as a stoichiometric compound. Finally, a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in this binary system were obtained. The calculated results are in reasonable agreement with the reported experimental data.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys