Article ID Journal Published Year Pages File Type
1639523 Transactions of Nonferrous Metals Society of China 2009 5 Pages PDF
Abstract

A modified analytic embedded-atom model(MAEAM) was applied to investigate surface premelting and melting behaviors of Nb(111) plane by molecular dynamics(MD) simulations. First the relaxation of surface interface space at 300 K was studied. Then a number N of the disordered atoms per unit area was determined at the given temperatures to investigate the surface premelting and melting evolution. The obtained results indicated that the premelting phenomena occurred at about 1 100 K and a liquid-like layer emerged on (111) plane simultaneously. As temperature increased up to 2 200 K, the number N grew logarithmically for short-range metallic interactions. Upon 2 350 K surface melting generated originally and the number N increased exponentially with the incremental temperature.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys