Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1640357 | Transactions of Nonferrous Metals Society of China | 2007 | 6 Pages |
To clarify the localized corrosion mechanism associated with precipitates containing Mg in Al alloys, the simulated bulk precipitates of S and β were synthesized through melting and casting. Their electrochemical behaviors and coupling behaviors with α(Al) in NaCl solution were measured. Meanwhile, simulated Al alloys containing S and β particles were prepared and their corrosion morphologies were observed. It's found that there exist two kinds of corrosion mechanisms associated with precipitates containing Mg. The precipitate of β is anodic to the alloy base, resulting in its anodic dissolution and corrosion during the whole corrosion process. While, there exists a corrosion conversion mechanism associated with the S precipitate, which contains active element Mg and noble element Cu simultaneously. At an initial stage, S is anodic to the alloy matrix at its periphery and the corrosion occurs on its surface. However, during its corrosion process, Mg is preferentially dissolved and noble Cu is enriched in the remnants. This makes S become cathodic to α(Al) and leads to anodic dissolution and corrosion on the alloy base at its periphery at a later stage.