Article ID Journal Published Year Pages File Type
1640869 Transactions of Nonferrous Metals Society of China 2006 5 Pages PDF
Abstract

Alumina-doped yttria-stabilized zirconia (ADYSZ) nanopowders were prepared by microwave-assisted peroxyl-complex coprecipitation (MAPCC) using ZrOCl2·8H2O, Y2O3 and AlCl3·6H2O as starting materials, NH3·H2O as precipitant and H2O2 as complexant. The effects of adding H2O2 and microwave drying on the preparation and properties of ADYSZ were investigated. The precursors and nanopowders were studied by EDX, XRD, SEM and TEM techniques. The results show that the uniformity of component distribution within ADYSZ nanopowders is improved by adding appropriate dosage of H2O2. Complexing reaction between H2O2 and Zr4+ ion restrains the hydrolyzation and precipitation of Zr4+ ion. With the addition of H2O2, Al3+, Y3+ and Zr4+ ions can be precipitated synchronously in a relatively narrow range of pH value. H2O2 also improves the filterability of the wet precipitate. The highly hydrophilic precipitates can be quickly and effectively separated from aqueous solution. During microwave drying process, the moisture of wet precursors is selectively heated. Quick expansion of steam vapor within the wet colloidal particles causes the aggregations burst into numerous tiny lumps. Compared with oven drying, microwave drying can not only shorten drying time but also reduce aggregation intensity of the resultant ADYSZ nanopowders.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys