Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1648253 | Materials Letters | 2011 | 4 Pages |
CeO2–ZnO composite nanofibers were fabricated via the electrospinning technique using zinc acetate and cerium nitrate as the precursors, poly(vinylpyrrolidone) as the fiber template, and 2:1(v/v) ethanol/water mixtures as the co-solvent, followed by thermal treatment at 600 °C for 3 h. Various characterization methods were employed to investigate the morphologies and structures of the nanofibers. The calcined composite nanofibers showed a continuous line feature with an average diameter of 46 nm composed of 15 ± 3 nm CeO2 and ZnO nanoparticles. Photocatalytic activity experiments showed that the Rhodamine B was almost completely decomposed when it was catalyzed by CeO2–ZnO nanofibers within 3 h, while only 17.4% and 82.3% were decomposed under catalysis by CeO2 and ZnO nanofibers respectively. Such CeO2–ZnO composite nanofibers could have potential applications in the treatment of organic-polluted water.