Article ID Journal Published Year Pages File Type
1649619 Materials Letters 2009 4 Pages PDF
Abstract

Single molecular layers of 2-(4-pyridylethyl)triethoxysilane have been deposited on native oxide surfaces of silicon, with the triethoxysilylethyl groups towards the silicon oxide interface and pyridine at the surface. It is possible to “shave” or mechanically break the molecular bonds at the alkoxy-silane (Si–C) bond using scanning atomic force microscope, leaving large swaths of surface area cut to a depth of 0.64 ± 0.06 nm, exposing the silicon of the alkoxy-silane ligand. Mechanical cleavage of the pyridine ligand alone is also possible, but more difficult to control selectively.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , ,