Article ID Journal Published Year Pages File Type
1650296 Materials Letters 2010 4 Pages PDF
Abstract

The goal of the present study was to investigate the effect of macropore size on the compressive strength and in vitro degradation of porous calcium phosphate cements (CPCs). For this purpose, a series of porous CPCs with three different macropore sizes (200–300 μm, 300–450 μm and 450–600 μm) and comparable porosity were prepared by salting-out method, and the study of in vitro degradation behavior was carried out under a constant fluid flow environment. The results showed that the increase in macropore size of CPCs with invariant porosity resulted in a decrease in the compressive strength but an increase in the degradation rate of CPCs significantly, suggesting the possibility that the degradation rate and compressive strength of biomaterials can be regulated by varying the macropore size while maintaining the porosity unchanged.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , ,