Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1651462 | Materials Letters | 2007 | 5 Pages |
Novel hybrid-reinforced (TiB + La2O3)/Ti composites were in situ synthesized utilizing the reaction between Ti, LaB6 and B2O3 through homogeneous melting in a non-consumable vacuum arc remelting furnace. The thermodynamics of in situ synthesis reaction were analyzed. The phases in the composites were identified by X-ray diffraction (XRD) and the microstructures of the composites were examined by optical microscope (OM), backscattered scanning electron microscope (SEM) and field-emission SEM. Three kinds of reinforcements were found in the composites: La2O3 particles (diameter: ∼ 2 μm), TiB whiskers (width: ∼ 3 μm) and TiB plates (thickness: ∼ 1.5 μm). The reinforcements' sizes were fine and they were homogeneously distributed in the matrix.