Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1651909 | Materials Letters | 2007 | 4 Pages |
The microwave dielectric properties of xNd(Zn1/2Ti1/2)O3–(1 − x)CaTiO3 have been investigated. The system has been prepared by a conventional solid state ceramic route. Nd(Zn1/2Ti1/2)O3 (NZT) possesses a dielectric constant (εr) of 32, a high quality factor (Q × f) of 170,000 GHz and a temperature coefficient of resonant frequency (τf) of − 42 ppm/°C. In order to produce a temperature-stable material, the addition of CaTiO3 leads to a near-zero temperature variation of resonant frequency. In general, the microwave quality factor (Q × f) decreased as x increased and the temperature coefficient of resonant frequency (τf) was approximately linearly proportional to permittivity. The dielectric constant decreases from 77 to 32 as x varies from 0.2 to 1.0. The dielectric constant (εr) of 45, Q × f value of 56,000 (at 6 GHz) and temperature coefficient of resonant frequency (τf) of 0 ppm/°C were obtained for 0.5Nd(Zn1/2Ti1/2)O3–0.5CaTiO3 ceramics sintered at 1300 °C for 4 h. As the content of x increases, the highest Q × f value of 136,200 GHz for x = 0.8 is achieved at the sintering temperature 1300 °C.