Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1653055 | Materials Letters | 2007 | 4 Pages |
Nanocrystalline cerium dioxide (CeO2) had been synthesized by two different methods which were mechanochemical and water-in-oil microemulsion. Effects of synthesis conditions on properties of nanocrystalline cerium dioxide were investigated. X-ray diffraction (XRD) was used to characterize the phase and crystallite size of synthesized cerium dioxide nanoparticles. XRD results showed that face centered cubic CeO2 nanoparticles with crystallite size in nanometer scale were formed. The crystallinity increased with increasing annealing temperature. The average specific surface area of the particles was probed using gas adsorption–desorption measurements. The average particles size was calculated from the specific surface area and was determined to be 5.2 nm for microemulsion samples and 6.9 nm for mechanochemical samples. These results showed that properties of synthesized cerium dioxide could be tailored by adjusting the synthesis conditions.